1.點擊下面按鈕復制微信號
點擊復制微信號
上海威才企業(yè)管理咨詢有限公司
本課程為基礎課程,面向所有業(yè)務部門。
本課程的主要目的是,幫助學員了解大數(shù)據(jù)的本質(zhì),培養(yǎng)學員的數(shù)據(jù)意識和數(shù)據(jù)思維,掌握常用的統(tǒng)計分析方法和工具,以業(yè)務問題為導向,提升學員的數(shù)據(jù)分析綜合能力。
本課程具體內(nèi)容包括:
1、 大數(shù)據(jù)的本質(zhì),核心數(shù)據(jù)思維
2、 數(shù)據(jù)分析過程,數(shù)據(jù)分析框架
3、 數(shù)據(jù)分析工具,數(shù)據(jù)可視呈現(xiàn)
4、 影響因素分析,定量預測模型
本課程從實際的業(yè)務需求出發(fā),結(jié)合行業(yè)的典型應用特點,圍繞實際的商業(yè)問題,對數(shù)據(jù)分析及數(shù)據(jù)挖掘技術(shù)進行了全面的介紹(從數(shù)據(jù)收集與處理,到數(shù)據(jù)分析與挖掘,再到數(shù)據(jù)可視化和報告撰寫),通過大量的操作演練,幫助學員掌握數(shù)據(jù)分析和數(shù)據(jù)挖掘的思路、方法、表達、工具,從大量的企業(yè)經(jīng)營數(shù)據(jù)中進行分析,挖掘客戶行為特點,幫助運營團隊深入理解業(yè)務運作,以達到提升學員的數(shù)據(jù)綜合分析能力,支撐運營決策的目的。
通過本課程的學習,達到如下目的:
1、 了解數(shù)據(jù)分析的本質(zhì),理解數(shù)據(jù)決策的底層邏輯
2、 學會搭建數(shù)據(jù)分析框架,熟悉常用的業(yè)務模型
3、 熟悉數(shù)據(jù)分析標準過程,能夠按步驟進行數(shù)據(jù)分析
4、 掌握常用數(shù)據(jù)分析方法,熟練使用Excel高級數(shù)據(jù)分析工具
5、 掌握常用高級定量預測模型,理解模型原理,學會解讀模型含義
【學員要求】
1、 每個學員自備一臺便攜機(必須)。
2、 便攜機中事先安裝好Excel 2013版本(建議2016版本以上)。
注:講師可以提供試用版本軟件及分析數(shù)據(jù)源。
【授課方式】
理論精講 + 案例演練 + 實際業(yè)務問題分析 + Excel實踐操作
采用互動式教學,圍繞業(yè)務問題,展開數(shù)據(jù)分析過程,全過程演練操作,讓學員在分析、分享、講授、總結(jié)、自我實踐過程中獲得能力提升。
問題:什么是數(shù)據(jù)思維?大數(shù)據(jù)決策的底層邏輯以及決策依據(jù)是什么?
1、 數(shù)字化五大技術(shù)戰(zhàn)略:ABCDI戰(zhàn)略
2、 大數(shù)據(jù)的本質(zhì)
‐ 數(shù)據(jù),是事物發(fā)展和變化過程中留下的痕跡
‐ 大數(shù)據(jù)不在于量大,而在于全(多維性)
‐ 業(yè)務導向還是技術(shù)導向
3、 大數(shù)據(jù)決策的底層邏輯(即四大核心價值)
‐ 探索業(yè)務規(guī)律,按規(guī)律來管理決策
案例:客流規(guī)律與排班及最佳營銷時機
案例:致命交通事故發(fā)生的時間規(guī)律
‐ 發(fā)現(xiàn)運營變化,定短板來運營決策
案例:考核周期導致的員工月初懈怠
案例:工序信號異常監(jiān)測設備故障
‐ 理清要素關(guān)系,找影響因素來決策
案例:情緒對于股市漲跌的影響
案例:為何升職反而會增加離職風險?
‐ 預測未來趨勢,通過預判進行決策
案例:惠普預測員工離職風險及挽留
案例:保險公司的車險預測與個性化保費定價
4、 大數(shù)據(jù)決策的三個關(guān)鍵環(huán)節(jié)
‐ 業(yè)務數(shù)據(jù)化:將業(yè)務問題轉(zhuǎn)化為數(shù)據(jù)問題
‐ 數(shù)據(jù)信息化:提取數(shù)據(jù)中的業(yè)務規(guī)律信息
‐ 信息策略化:基于規(guī)律形成業(yè)務應對策略
案例:用數(shù)據(jù)來識別喜歡賺“差價”的營業(yè)員
1、 數(shù)據(jù)分析的六步曲
2、 步驟1:明確目的,確定分析思路
‐ 確定分析目的:要解決什么樣的業(yè)務問題
‐ 確定分析思路:分解業(yè)務問題,構(gòu)建分析框架
3、 步驟2:收集數(shù)據(jù),尋找分析素材
‐ 明確數(shù)據(jù)范圍
‐ 確定收集來源
‐ 確定收集方法
4、 步驟3:整理數(shù)據(jù),確保數(shù)據(jù)質(zhì)量
‐ 數(shù)據(jù)質(zhì)量評估
‐ 數(shù)據(jù)清洗、數(shù)據(jù)處理和變量處理
‐ 探索性分析
5、 步驟4:分析數(shù)據(jù),尋找業(yè)務答案
‐ 選擇合適的分析方法
‐ 構(gòu)建合適的分析模型
‐ 選擇合適的分析工具
6、 步驟5:呈現(xiàn)數(shù),解讀業(yè)務規(guī)律
‐ 選擇恰當?shù)膱D表
‐ 選擇合適的可視化工具
‐ 提煉業(yè)務含義
7、 步驟6:撰寫報告,形成業(yè)務策略
‐ 選擇報告種類
‐ 完整的報告結(jié)構(gòu)
演練:產(chǎn)品精準營銷案例分析
‐ 如何搭建精準營銷分析框架
‐ 精準營銷分析的過程和步驟
問題:數(shù)據(jù)分析方法的種類?分析方法的不同應用場景?
1、 業(yè)務分析的三個階段
‐ 現(xiàn)狀分析:通過企業(yè)運營指標來發(fā)現(xiàn)規(guī)律及短板
‐ 原因分析:查找數(shù)據(jù)相關(guān)性,探尋目標影響因素
‐ 預測分析:合理配置資源,預判業(yè)務未來的趨勢
2、 常用的數(shù)據(jù)分析方法種類
‐ 描述性分析法(對比/分組/結(jié)構(gòu)/趨勢/交叉…)
‐ 相關(guān)性分析法(相關(guān)/方差/卡方…)
‐ 預測性分析法(回歸/時序/決策樹/神經(jīng)網(wǎng)絡…)
‐ 專題性分析法(聚類/關(guān)聯(lián)/RFM模型/…)
3、 統(tǒng)計分析基礎
‐ 統(tǒng)計分析兩大關(guān)鍵要素(類別、指標)
‐ 統(tǒng)計分析的操作模式(類別à指標)
‐ 統(tǒng)計分析三個操作步驟(統(tǒng)計、畫圖、解讀)
4、 常用的描述性指標
‐ 集中程度:均值、中位數(shù)、眾數(shù)
‐ 離散程度:極差、方差/標準差、IQR
‐ 分布形態(tài):偏度、峰度
5、 基本分析方法及其適用場景
‐ 對比分析(查看數(shù)據(jù)差距,發(fā)現(xiàn)事物變化)
演練:分析產(chǎn)品受歡迎情況及貢獻大小
演練:用數(shù)據(jù)來探索增量不增收困境的解決方案
‐ 分布分析(查看數(shù)據(jù)分布,探索業(yè)務層次)
演練:銀行用戶的消費水平和消費層次分析
案例:通信運營商的流量套餐劃分合理性的評估
演練:呼叫中心接聽電話效率分析(呼叫中心)
‐ 結(jié)構(gòu)分析(查看指標構(gòu)成,評估結(jié)構(gòu)合理性)
案例:增值業(yè)務收入結(jié)構(gòu)分析(通信)
案例:物流費用成本結(jié)構(gòu)分析(物流)
案例:中移動用戶群動態(tài)結(jié)構(gòu)分析
演練:財務領(lǐng)域的結(jié)構(gòu)瀑布圖、財務收支的變化瀑布圖
‐ 趨勢分析(發(fā)現(xiàn)事物隨時間的變化規(guī)律)
案例:破解零售店銷售規(guī)律
案例:手機銷量的淡旺季分析
案例:微信用戶的活躍時間規(guī)律
演練:發(fā)現(xiàn)客流量的時間規(guī)律
‐ 交叉分析(從多個維度的數(shù)據(jù)指標分析)
演練:用戶性別+地域分布分析
演練:不同客戶的產(chǎn)品偏好分析
演練:不同學歷用戶的套餐偏好分析
演練:銀行用戶的違約影響因素分析
問題:如何才能全面/系統(tǒng)地分析而不遺漏?如何分解和細化業(yè)務問題?
1、 業(yè)務分析思路和分析框架來源于業(yè)務模型
2、 常用的業(yè)務模型
‐ 外部環(huán)境分析:PEST
‐ 業(yè)務專題分析:5W2H
‐ 競品/競爭分析:SWOT、波特五力
‐ 營銷市場專題分析:4P/4C等
3、 用戶行為分析(5W2H分析思路和框架)
‐ WHY:原因(用戶需求、產(chǎn)品亮點、競品優(yōu)劣勢)
‐ WHAT:產(chǎn)品(產(chǎn)品喜好、產(chǎn)品貢獻、產(chǎn)品功能、產(chǎn)品結(jié)構(gòu))
‐ WHO:客戶(基本特征、消費能力、產(chǎn)品偏好)
‐ WHEN:時間(淡旺季、活躍時間、重購周期)
‐ WHERE:區(qū)域/渠道(區(qū)域喜好、渠道偏好)
‐ HOW:支付/促銷(支付方式、促銷方式有效性評估等)
‐ HOW MUCH:價格(費用、成本、利潤、收入結(jié)構(gòu)、價格偏好等)
結(jié)合公司具體業(yè)務目標,搭建數(shù)據(jù)分析框架
1、 常用圖形類型及選擇原則
2、 基本圖形畫圖技巧
3、 圖形美化原則
4、 表格美化技巧
案例:繪圖示例
問題:如何讓你的分析報告顯得更專業(yè)?
1、 分析報告的種類與作用
2、 報告的結(jié)構(gòu)
3、 報告命名的要求
4、 報告的目錄結(jié)構(gòu)
5、 前言
6、 正文
7、 結(jié)論與建議
案例:報告示例和演示
營銷問題:哪些因素是影響業(yè)務目標的關(guān)鍵要素?比如,產(chǎn)品在貨架上的位置是否對銷量有影響?價格和廣告開銷是如何影響銷量的?影響風控的關(guān)鍵因素有哪些?如何判斷?
1、 影響因素分析的常見方法
2、 相關(guān)分析(衡量兩數(shù)據(jù)型變量的線性相關(guān)性)
‐ 相關(guān)分析的應用場景
‐ 相關(guān)分析的種類
‐ 相關(guān)分析的基本步驟
演練:營銷費用會影響銷售額嗎?影響程度如何量化?
演練:哪些因素與汽車銷量有相關(guān)性
演練:影響用戶消費水平的因素會有哪些
3、 方差分析(衡量類別變量與數(shù)值變量間的相關(guān)性)
‐ 方差分析的應用場景
‐ 方差分析的三個種類
2 單因素方差分析
2 多因素方差分析
2 協(xié)方差分析
‐ 單因素方差分析的原理
‐ 方差分析的四個步驟
‐ 解讀方差分析結(jié)果的兩個要點
演練:擺放位置與銷量有關(guān)嗎
演練:客戶學歷對消費水平的影響分析
演練:廣告和價格是影響終端銷量的關(guān)鍵因素嗎
演練:營業(yè)員的性別、技能級別對產(chǎn)品銷量有影響嗎
演練:尋找影響產(chǎn)品銷量的關(guān)鍵因素
4、 相關(guān)性分析方法總結(jié)
營銷問題:如何預測未來的產(chǎn)品銷量/銷售額?如果產(chǎn)品跟隨季節(jié)性變動,該如何預測?
1、 回歸分析簡介和原理
2、 回歸分析的種類
‐ 一元回歸/多元回歸
‐ 線性回歸/非線性回歸
3、 常用回歸分析方法
‐ 散點圖+趨勢線(一元)
‐ 線性回歸工具(多元線性)
‐ 規(guī)劃求解工具(非線性回歸)
演練:散點圖找營銷費用與銷售額的關(guān)系
4、 線性回歸分析的五個步驟
演練:營銷費用、辦公費用與銷售額的關(guān)系(線性回歸)
5、 線性回歸方程的解讀技巧
‐ 定性描述:正相關(guān)/負相關(guān)
‐ 定量描述:自變量變化導致因變量的變化程度
6、 回歸預測模型評估
‐ 質(zhì)量評估指標:判定系數(shù)R^2
‐ 如何選擇最佳回歸模型
演練:如何選擇最佳的回歸預測模型(一元曲線回歸)
7、 帶分類自變量的回歸預測
演練:汽車季度銷量預測
演練:工齡、性別與終端銷量的關(guān)系
演練:如何評估銷售目標與資源最佳配置
結(jié)束:課程總結(jié)與問題答疑。
聯(lián)系電話:4006-900-901
微信咨詢:威才客服
企業(yè)郵箱:shwczx@shwczx.com
深耕中國制造業(yè)
助力企業(yè)轉(zhuǎn)型
2021年度咨詢客戶數(shù)
資深實戰(zhàn)導師
客戶滿意度
續(xù)單和轉(zhuǎn)介紹